Solution to Math4230 Tutorial 10

1. Consider MC/MC framework, assuming that w* is finite, and M is convex
and closed. Show that ¢* = w*.

Solution:

We prove this result by showing that all the assumptions of MC/MC
Strong Duality (Prop. 4.3.1) are satisfied. By assumption, w* < oo and
the set M is convex. Therefore, we only need to show that for every
sequence {uy, wy} C M with ug — 0, there holds w* < lim infy_, o wy.

Consider a sequence {ug,wr} C M with up — 0. If liminfy_ o wg =
oo, then we are done, so assume that liminf;_,. wi = W for some scalar
W . Since M C M and M is closed by assumption, it follows that (0, @) €
M. By the definition of the set M, this implies that there exists some @
with @ < @ and (0,w) € M. Hence we have

w'= inf w<w<w=liminfwy,
(0O,w)eM k—oo
proving the desired result and showing that ¢* w*.

2. Consider MC/MC framework and assume w* > —oo, M is convex and
0 € 1i(D), where D = {u]| there exists w € R with (u,w) € M}. Here Q*
is the set of optimal solutions of the max crossing problem. Show that
(a) (aff(D))* C L+, where Lg is the lineality space of the set S;

(b) Rg+ C (aff(D))*, where Rg is the recession cone of the set S;

(c) Show that Q is compact, where Q = Q* N (aff(D))*.

Solution Please refer to proof of Proposition 4.4.2 in Appendix.

3. Considering MC/MC framework, assuming that w* < oo, and M is closed
and convex, does not contain a halfline of the form {(z,w + a)|a < 0}.
Show that

f(z) = inf{w|(z,w) e M}, xe€R"
is closed.

Solution To show that f is closed, we argue by contradiction. If f is
not closed, there exists a vector x and a sequence {z} that converges to
z and is such that

fla) > lim f(z).

We claim that limg_,o f(x) is finite, i.e., that limg_ o f(zr) > —oc.
Indeed, by Nonvertical Hyperplane Theorem (Prop. 1.5.8), the epigraph
of f is contained in the upper halfspace of a nonvertical hyperplane of
R™*1. Since {z}} converges to x, the limit of f(z;) cannot be equal to
—00. Thus the sequence (z, f(x)) , which belongs to M, converges to
(,limg_ o f(x))) Therefore, since M is closed, (x,limg_ oo f(zx) € M.
By the definition of f, this implies that f(x) < limg_, f(zk), contradict-
ing our earlier hypothesis.



Appendix
Proof of Proposition 4.4.2:

Proof: By Prop. 4.4.1, ¢* is finite and Q* is nonempty. Since ¢ is concave
and upper semicontinuous (cf. Prop. 4.1.1), and Q* = {p | g(pe) > q*}, it
follows that Q* is convex and closed. We will first show that the recession
cone R+ and the lineality space Lo+ of Q* are both equal to (a.l’f(D)}JL
[note here that aff(D) is a subspace since it contains the origin]. The proof
of this is based on the generic relation Lo+ C Rg+ and the following two
relations

(aff(D))" € Lg-,  Rq- C (aff(D)) ",

which we show next. l
Let d be a vector in (aff(D))™, so that d'u = 0 for all u € D. For
any vector u € @* and any scalar a, we then have

glutead)= inf_ {(p+adfu+w}= inf_{p'u+w}=qy),
(u,w)eM (u,w)EM

so that 4+ ad € Q*. Hence d € Lg~, and it follows that (aff(D))L C Lg~.
Let d be a vector in Rg«, so that for any p € @Q* and o > 0,

g(u+ad)= inf_{(p+ad)u+w}=g*
(u,w)eM

Since 0 € ri(D), for any u € aff(D), there exists a positive scalar vy such
that the vectors yu and —~u are in D. By the definition of D, there exist
scalars w+ and w— such that the pairs (yu,w*) and (—yu,w—) are in M.
Using the preceding equation, it follows that for any p € Q*, we have

(b +ad)(vu) +wt 2 g%, Va>0,

(e + ad) (—yu) + w= > g*, Y a>0.

If d'u # 0, then for sufficiently large @ > 0, one of the preceding two
relations will be violated. Thus we must have d'u = 0, showing that d €

(aff (D)) * and implying that

Ro- C (aff(D)) ™.

This relation, together with the generic relation Lo« C Rg+ and the rela-
tion (aff(D))l C Lo+ proved earlier, shows that

(afi(D))" C Lo- C Rg- C (aff(D)) ™.

Therefore N
Lo+« = Rg+ = (aff(D)) .

We now use the decomposition result of Prop. 1.4.4, to assert that

Q* = Lo- + (Q* N Lj.).



Since Lo+ = (aff(D))l, we obtain

L ~
Q* = (aff(D))” +Q,
where Q = Q* Naff(D). Furthermore, by Prop. 1.4.2(c), we have

RQ = Rg~ N Rag(p)-

Since R+ = (aﬁ"(D))J', as shown earlier, and R.q(p)y = aff(D), the reces-
sion cone Ry consists of the zero vector only, implying that the set Q is
compact.

From the formula Q* = (aff (D))l +Q, it follows that Q* is compact
if and only if (aﬁ(D))J' = {0}, or equivalently aff(D) = R». Since 0 is a
relative interior point of D by assumption, this is equivalent to 0 being an
interior point of D. Q.E.D.



